
Lineare Funktionen – echte Prüfungsaufgabe

LÖSUNG

Name der Aufgabe: Lineare (-2/0)

- a) Zeichne in ein Koordinatensystem das rechtwinklige Dreieck mit den Eckpunkten A (-2/0), B (8 /0), C (0 /4).
- b) Die Punkte A und C sowie B und C bestimmen jeweils eine lineare Funktion. Stelle die beiden Funktionsgleichungen auf.
- c) Berechne die Längen der Seiten a und b. Runde auf eine Dezimalstelle.
- d) Berechnen Sie die Winkel a und β . Runden Sie auf ganze Grad.

1. Steigungsfaktor m	2. y- Abschnitt n		3. Funktionsgleichung
$m = \frac{y_2 - y_2}{x_2 - x_1}$	y = m · x + n		
$m = \frac{4-0}{0-1}$	4 = 2 + n		y = m · x + n
0 - m = •	<u> = n</u>		<u>y</u> =
b) Funktionsgleichung der St	recke BC [B (8/0) und	C (0/4)]	
1. Steigungsfaktor m	2. y- Abschnitt	2. y- Abschnitt n	
$m = \frac{y_2 - y_2}{x_2 - x_1}$	y = m · x + n		
$m = \frac{\bullet 0}{0 - 8}$	4 = • 0 + n		y = m · x + n
m = (0-8	<u>= n</u>		
c) Längen der Seiten a und b	mit dem Kathetensatz	oder Pythagoras	
Seite b		Seite a	
$b^{2} = c \cdot p$ $b^{2} = \bigcirc cm \cdot 2 cm$ $b^{2} = 20 cm^{2} / \sqrt{b}$ $b = \bigcirc cm$		= c · p = 10 cm · cm = 80 cm ² / J	
CIII			
d) Winkel a und B			
Winkel a	W	inkel β	
d) Winkel a und β Winkel a $\tan \alpha = \frac{Gegenkathete}{Ankathete}$	ta	inkel β $n \beta = \frac{Gegenkathete}{Ankathete}$ $n \beta = \frac{4cm}{4cm}$	W

© Reutner Johannes, VS Stamsried-Pösing